Automatic Control

If you have a smart project, you can say "I'm an engineer"

Lecture 4

Staff boarder

Dr. Mohamed Saber Sokar
Dr. Mostafa Elsayed Abdelmonem

Automatic Control MPE 424

- Lecture aims:
- Understand the Block reduction techniques
- Identify the transfer function

Mathematical Modeling

Block
Diagram

Signal Flow

Component Block Diagram

Component Block Diagram

$R(s)$ Reference input
$C(s)$ Output signal (controlled variable)
$B(s) \quad$ Feedback signal $=H(s) C(s)$
$E(s) \quad$ Actuating signal (error) $=[R(s)-B(s)]$
$G(s)$ Forward path transfer function or open-loop transfer function $=C(s) / E(s)$
$M(s)$ Closed-loop transfer function $=C(s) / R(s)=G(s) /[1+G(s) H(s)]$
$H(s)$ Feedback path transfer function
$G(s) H(s) \quad$ Loop gain
$\frac{E(s)}{R(s)}=$ Error-response transfer function $\frac{1}{1+G(s) H(s)}$

Component Block Diagram

- It represents the mathematical relationships between the elements of the system.

- The transfer function of each component is placed in box, and the input-output relationships between components are indicated by lines and arrows.

Component Block Diagram

- We can solve the equations by graphical simplification, which is often easier and more informative than algebraic manipulation, even though the methods are in every way equivalent.
- The interconnections of blocks include summing points, where any number of signals may be added together.

Block Diagram Reduction Technique

- Blocks in series:

$$
\frac{Y_{2}(s)}{U_{1}(s)}=G_{1} G_{2}
$$

- Blocks in parallel with their outputs added:

Combining blocks in cascade

Block Diagram Reduction Technique

- Transfer function

$$
\frac{Y(s)}{R(s)}=\frac{G_{1}}{1+G_{1} G_{2}}
$$

Two blocks are connected in a feedback arrangement so that each feeds into the other.

Block Diagram Reduction Technique

- Proof:

$$
\begin{aligned}
& \xrightarrow{\mathrm{e}} \xrightarrow{\mathrm{G}} \rightarrow \stackrel{G_{1}}{1+G_{1} G_{2}} \longrightarrow y=\frac{G_{1}}{1+G_{1} G_{2}} x \\
& e=x-b, b=G_{2} y, y=G_{1} e \Rightarrow y=\frac{G_{1}}{1+G_{1} G_{2}} x \\
& e=x-G_{2} G_{1} e \\
& \left(1+G_{1} G_{2}\right) e=x \Rightarrow e={\frac{1}{1+G_{1} G_{2}}}^{\mathrm{e}} x
\end{aligned}
$$

Block Diagram Reduction Technique

Block Diagram Reduction Technique

Block Diagram Reduction Technique

TABLE 3.4.1 Some of the Block Diagram Reduction Manipulations

Original Block Diagram	Manipulation	Modified Block Diagram
$\xrightarrow{R} G_{1} \xrightarrow{C}$	Cascaded elements	$\xrightarrow{R} G_{1} G_{2} \xrightarrow{C}$
	Addition or subtraction (eliminating auxiliary forward path)	$\xrightarrow{R} G_{1} \pm G_{2} \xrightarrow{C}$
$\xrightarrow[\longleftrightarrow]{R} \quad G \quad \xrightarrow{C}$	Shifting of pickoff point ahead of block	
	Shifting of pickoff point behind block	
	Shifting summing point ahead of block	
	Shifting summing point behind block	
	Removing H from feedback path	
	Eliminating feedback path	$\xrightarrow{R} \xrightarrow{\frac{G}{1+G H} \xrightarrow{C}}$

Block Diagram Reduction Technique

Example

Block Diagram Reduction Technique

Example 2: Find TF from U to Y:

- No pure series/parallel/feedback
- Needs to move a block, but which one?

Key: move one block to create pure series or parallel or feedback!
So move $\frac{10}{s(s+20)}$ either left or right.

Block Diagram Reduction Technique

Example

Can use superposition:
First set $\mathrm{D}=0$, find Y due to R
Then set $\mathrm{R}=0$, find Y due to D

Finally, add the two component to get the overall Y

Block Diagram Reduction Technique

First set $\mathrm{D}=0$, find Y due to R

$$
Y_{1}(s)=\frac{G_{1} G_{2}}{1+G_{1} G_{2} H_{1}} R(s)
$$

Block Diagram Reduction Technique

Then set $\mathrm{R}=0$, find Y due to D

$$
Y_{2}(s)=\frac{G_{2}}{1+G_{1} G_{2} H_{1}}(-D(s))
$$

(a)

Block Diagram Reduction Technique

Finally, add the two component to get the overall Y

Modeling of Motors

Mathematical Modeling

The equations of the Ward-Leonard layout are as follows . The Kirchhoff's law of voltages of the excitation field of the generator G is

$$
v_{\mathrm{f}}=R_{\mathrm{f}} i_{\mathrm{f}}+L_{\mathrm{f}} \frac{\mathrm{~d} i_{\mathrm{f}}}{\mathrm{~d} t}
$$

The voltage v_{g} of the generator G is proportional to the current i_{f}, i.e.,

$$
v_{\mathrm{g}}=K_{\mathrm{g}} i_{\mathrm{f}}
$$

The voltage v_{m} of the motor M is proportional to the angular velocity ω_{m}, i.e.,

$$
v_{\mathrm{m}}=K_{\mathrm{b}} \omega_{\mathrm{m}}
$$

The differential equation for the current i_{a} is

$R_{\mathrm{a}} i_{\mathrm{a}}+L_{\mathrm{a}} \frac{\mathrm{d} i_{\mathrm{a}}}{\mathrm{d} t}=v_{\mathrm{g}}-v_{\mathrm{m}}=K_{\mathrm{g}} i_{\mathrm{f}}-K_{\mathrm{b}} \omega_{\mathrm{m}}$
The torque T_{m} of the motor is proportional to the current i_{a}

$$
T_{\mathrm{m}}=K_{\mathrm{m}} i_{\mathrm{a}}
$$

Mathematical Modeling

The equations of the Ward-Leonard layout are as follows . The Kirchhoff's law of voltages of the excitation field of the generator G is
The rotational motion of the rotor is described by

$$
J_{\mathrm{m}}^{*} \frac{\mathrm{~d} \omega_{\mathrm{m}}}{\mathrm{~d} t}+B_{\mathrm{m}}^{*} \omega_{\mathrm{m}}=K_{\mathrm{m}} i_{\mathrm{a}}
$$

where $J_{m}{ }^{*}=J_{m}+N^{2} J_{L}$ and $B_{m}{ }^{*}=B_{m}+N^{2} B_{L}$, where $N=N / / N_{2}$. Here, J_{m} is the moment of inertia and B_{m} the viscosity coefficient of the motor: likewise, for $J_{\llcorner }$and $B_{\llcorner }$of the load. where use was made of the relation

$$
\omega_{\mathrm{y}}=N \omega_{\mathrm{m}} .
$$

The tachometer equation

$$
v_{y}=K_{\mathrm{t}} \omega_{\mathrm{y}}
$$

the amplifier equation
$v_{f}=K_{a} v_{e}$

Mathematical Modeling

The mathematical model of the Ward-Leonard layout are as follows .

$$
\begin{aligned}
& \frac{\Omega_{\mathrm{y}}(s)}{V_{\mathrm{f}}(s)}=\frac{K_{\mathrm{g}} K_{\mathrm{m}} N}{\left(L_{\mathrm{f}} s+R_{\mathrm{f}}\right)\left[\left(L_{\mathrm{a}} s+R_{\mathrm{a}}\right)\left(J_{\mathrm{m}}^{*} s+B_{\mathrm{m}}^{*}\right)+K_{\mathrm{m}} K_{\mathrm{b}}\right]} \\
& \frac{\Omega_{y}(s)}{v_{e}(s)}=\frac{K_{\mathrm{a}} K_{\mathrm{g}} K_{\mathrm{m}} N}{\left(L_{\mathrm{f}} s+R_{\mathrm{f}}\right)\left[\left(L_{\mathrm{a}} s+R_{a}\right)\left(J_{\mathrm{m}}^{*} s+B_{\mathrm{m}}^{*}\right)+K_{\mathrm{m}} K_{\mathrm{b}}\right]}
\end{aligned}
$$

The state variables of a dynamic system

Input signals
Output signals

The general form of a dynamic system

State Space Equations

- State equations is a description which relates the following $\dot{\mathbf{x}}(t)=\mathbf{A x}(t)+\mathbf{B u}(t)$ four elements: input, system, state variables, and output

$$
\mathbf{y}(t)=\mathbf{C x}(t)+D \mathbf{D}(t)
$$

Matrix A has dimensions $n \times n$ and it is called the system matrix, having the general form

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

Matrix B has dimensions $n x m$ and it is called the input matrix, having the general form
Matrix C has dimensions pxn and it is called the output matrix, having the general form

$$
\mathbf{C}=\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & & \vdots \\
c_{p 1} & c_{p 2} & \cdots & c_{p n}
\end{array}\right]
$$

Matrix D has dimensions pxm and it is called the feedforward matrix, having the general form

$$
\mathbf{B}=\left[\begin{array}{cccc}
b_{11} & b_{1} & \cdots & b_{m 1} \\
b_{21} & b_{21} & \cdots & b_{m 2} \\
\vdots & \vdots & & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{m n}
\end{array}\right]
$$

$$
\mathbf{D}=\left[\begin{array}{cccc}
d_{11} & d_{12} & \cdots & d_{1 m} \\
d_{21} & d_{22} & \cdots & d_{2 m} \\
\vdots & \vdots & & \vdots \\
d_{p 1} & d_{p 2} & \cdots & d_{p m}
\end{array}\right]
$$

State Space Equations

State Space representation

- The general form of a dynamic system

The concept of a set of state variables that represent a dynamic system can be illustrated in terms of the spring-mass-damper system. A set of state variables sufficient to describe this system includes the position and the velocity of the mass.

- We will define a set of state variables as (x1, x2), where

$$
x_{1}(t)=y(t) \quad \text { and } \quad x_{2}(t)=\frac{d y(t)}{d t} . \quad \frac{d x_{1}}{d t}=x_{2}
$$

To write Equation of motion in terms of the state variables, we substitute the state variables as already defined and obtain

$$
M \frac{d x_{2}}{d t}+b x_{2}+k x_{1}=u(t)
$$

$$
M \frac{d^{2} y}{d t^{2}}+b \frac{d y}{d t}+k y=u(t)
$$

Therefore, we can write the equations that describe the behavior of the spring-mass damper system as the set of two first-order differential equations

$$
\frac{d x_{2}}{d t}=\frac{-b}{M} x_{2}-\frac{k}{M} x_{1}+\frac{1}{M} u
$$

State Space representation

- State space matrix

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{2} \quad \frac{d x_{2}}{d t}=\frac{-b}{M} x_{2}-\frac{k}{M} x_{1}+\frac{1}{M} u \\
& {\left[\begin{array}{l}
\dot{x_{1}} \\
\dot{x_{2}}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
\frac{-k}{m} & \frac{-b}{m}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
\frac{1}{m}
\end{array}\right]\left[u_{(t)}\right]}
\end{aligned}
$$

State Space representation

- Transfer from time domain to frequency domain:

$$
\begin{aligned}
& R_{1} i_{1}(t)+\frac{1}{C} \int_{0}^{t} i_{1}(t) \mathrm{d} t-\frac{1}{C} \int_{0}^{t} i_{2}(t) \mathrm{d} t=v(t) \\
& {\left[R_{1}+\frac{1}{C s}\right] I_{1}(s)-\frac{1}{C s} I_{2}(s)=V(s)} \\
& -\frac{1}{C} \int_{0}^{i} i_{1}(t) \mathrm{d} t+R_{2} i_{2}(t)+L \frac{\mathrm{~d} i_{2}}{\mathrm{~d} t}+\frac{1}{C} \int_{0}^{t} i_{2}(t) \mathrm{d} t=0 \\
& -\frac{1}{C s} I_{1}(s)+\left[R_{2}+L s+\frac{1}{C s}\right] \mathrm{I}_{2}(s)=0
\end{aligned}
$$

- Transfer function

$$
\frac{I_{2}(s)}{V(s)}=\frac{C s}{\left(R_{1} C s+1\right)\left(L C s^{2}+R_{2} C s+1\right)-1}=\frac{1}{R_{1} L C s^{2}+\left(R_{1} R_{2} C+L\right) s+R_{1}+R_{2}}
$$

State Space representation

$$
\left\{\begin{array}{l}
e(t)-R_{1} i_{1}(t)-L_{1} \frac{d i_{1}}{d t}-V_{C}(t)=\phi \\
V_{C}(t)-L_{2} \frac{d i_{2}}{d t}-R_{2} i_{2}=\phi \\
i_{c}=i_{1}-i_{2}=C \frac{d v_{c}}{d t}
\end{array}\right.
$$

$$
x=\left(\begin{array}{lll}
i_{1} & i_{2} & v_{c}
\end{array}\right)^{T}
$$

$$
X^{\bullet}=\left(\begin{array}{ccc}
\frac{-R_{1}}{L_{1}} & 0 & \frac{-1}{L_{1}} \\
0 & \frac{-R_{2}}{L_{2}} & \frac{1}{L_{2}} \\
\frac{1}{C} & \frac{-1}{C} & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\left(\begin{array}{c}
\frac{1}{L_{1}} \\
0 \\
0
\end{array}\right) e(t)
$$

$$
y(t)=\left(\begin{array}{lll}
0 & R_{2} & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

State Space representation

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned} \quad \sum \text { Laplace } \quad\left\{\begin{array}{l}
S x(s)-x(0)=A x(s)+B u(s) \\
Y(s)=C x(s)+D u(s)
\end{array}\right.
$$

State Space representation

$$
\left\{\begin{array}{l}
\dot{x}_{1}=-5 x_{1}-x_{2}+2 u \\
\dot{x}_{2}=3 x_{1}-x_{2}+5 u
\end{array} \Rightarrow \dot{x}=\left(\begin{array}{rr}
-5 & -1 \\
3 & -1
\end{array}\right) x+\binom{2}{5}^{u}\right.
$$

$$
y=x_{1}+2 x_{2} \quad y=\left(\begin{array}{ll}
1 & 2
\end{array}\right) x
$$

$$
\begin{gathered}
G(S)=\left[\begin{array}{ll}
1 & 2
\end{array}\right] \frac{1}{\Delta}\left[\begin{array}{cc}
S+1 & -1 \\
3 & S+5
\end{array}\right]\left[\begin{array}{l}
2 \\
5
\end{array}\right] \\
G(s)=\frac{12 S+59}{(S+2)(S+4)}
\end{gathered}
$$

Model Examples

Quadrocopter Pole Acrobatics

ETHzürich

Thank you

